SAMSUNG

Poseidon NVMe-oF Reference System for EDSFF SSDs

삼성전자 메모리 사업부 소프트웨어 개발팀 김희수

heesoo84.kim@samsung.com

Agenda

SAMSUNG

Disaggregated Architecture for Datacenter Trend

slightly Hardware System for NVMe-oF

Software Solution for NVMe-oF

Future Works

Datacenter Trend

Disaggregated Architecture

Storage system is evolving towards the disaggregated architecture

Direct Attached Architecture

Increase CPU & SSD utilization

Reduce storage spending & TCO

Simplified scalability

Higher performance

Increase hardware flexibility

Ideal capacity utilization

Disaggregated Architecture

Vital Virtues of Disaggregated Storage

Ultimate Performance with Predictable Latency

High Bandwidth & Low Latency
Stable QoS User-oriented Manageability

In-band / Out-ofband Management
More Configuration for NAND Flash Cloud-friendly Features SAMSUNG

Volume Customizing

 Virtualization / Container API supported

NVMe-oF Interface

Can break through the scaling limitation of PCIe-attached NVMe

- \times Up to few hundreds
- Uses a transport protocol over a network to access remote NVMe
 - End-to-End NVMe semantics across a range of topologies
 - Retains NVMe efficiency and performance over network fabrics

Project Poseidon

Opensourced NVMe-oF Reference System Development Project

Started from July, 2018, Planning to opensource in March.

Project Poseidon

OCP based industrial collaboration b/w

- Component Vendor ↔ System Vendor ↔ Data Center
- Open-source HW & SW project to expand NVMe eco-system

Hardware System for NVMe-oF

Poseidon V1 Server

Chassis	EIA standard (19")
Form Factor	1U
Processor	Next Gen x86 Processor
# of Processors	2
Max # of Memory Slots	32
Memory Speed	3,200 MT/s
Network	RDMA / TCP
Network Speed	Up to 100 GbE * 6 port
PCle Version	PCIe 4.0
Storage	E1.S SSD * 32ea

① PM9A3 E1.S SSD	32ea
② SSD Backplane	1ea
③ Power Supply Unit (PSU)	2ea
④ Front Panel & IO Module	1ea
⑤ System Fan	8ea
6 Motherboard	1ea
⑦ OCP Mezzanine NIC	1ea
⑧ PCIe Slot (FHHL Card)	2ea

IO Performance – Single vs Aggregated

- Each 32 SSDs shows stable IO performance around 6.4GB/s
- Aggregated IO performance achieved > 102GB/s
- Lanes b/w CPU↔PCIe Switch (x16) are saturated with 4 SSDs

Samsung PM9A3 Specification

Form factor	E1.S
Capacity	960 GB, 1.92 TB, 3.82 TB, 7.68 TB
Sequential read	Up to 6,500 MB/s
Sequential write	Up to 3,200 MB/s
Random read	Up to 900,000 IOPS
Random write	Up to 150,000 IOPS
Physical Dimensions	31.5 x 111.49 x 5.9 mm
Power consumption	Read: <= 9.7W, Write: <= 11.7W
Host interface	PCIe Gen 4 x4

^{*}Theoretical B/W limit: 128GB/s

Software Solution for NVMe-oF

PoseidonOS Concept

- User-space storage OS for NVMe-oF
- Provide PCIe Gen4 performance via network
 - Up to 200GbE
- Support valuable storage features
 - NUMA-Aware, Volume Mgmt, Perf Throttling, SW RAID, ...
- Easily integrate with upper orchestration layers
 - RESTful, CSI, ...

PoseidonOS Array

User-defined collection of Physical NVMe SSDs

Can contain 1 or more POS volumes

NVM Subsystem Perspective

- Each logical volume (i.e., namespace) is mapped to namespace
- Max 256 volumes are supported

Userspace Advantage

User-space NVMe-oF / NVMe IO

- Avoids overheads of system calls and data copies
- Spends more CPU cycles for storage services
- Enables better latency and IOPS

Kernel-space

User-space

SAMSUNG

Log-structured RAID

 Log-structured RAID approach follows naturally since user data is stored to SSDs in log-structured manner

Can reduce WAF and QoS impact for user IO

IO Stack

Front-End	Back-End
Latency-oriented	Throughput-oriented
User IO, Network only	RAID, Flush, GC, …
Dedicated thread (No context switch)	Thread pool
Direct device interaction	Indirect device interaction

Storage Hierarchy in PoseidonOS

SAMSUNG

Experiment Environments

- PCIe Gen4 SSD * 32
- 200GbE Network Connection
 - NVMe/TCP
- 2 Arrays / 43 Volumes
- RAID 5 (15 + 1)
- Using uDriver in initiator-side

Poseidon

* Intel Xeon CPU (3Ghz, 48 Cores) * 2ea, DDR4-3200 32GB * 32ea, PM9A3 4TB * 32ea, MLNX CX-5 * 2 Ubuntu 5.3.0-24-generic, poseidonos-0.9.10

Performance Numbers

Achieved up to 200GbE Performance via NVMe/TCP

Random Write has room for improvement

Performance - Initiator SW Stack

User-space driver shows superior performance

Except for Seq. read, kernel driver has up to 23% performance drop

IO Consistency

Provide stable QoS in case of mixed IO (7:3)

Internal IO drops IO consistency slightly

Future Works

- Datacenter adoption and provide for a real cloud service
- Support innovative devices (ex. ZNS, QLC)
- Support more features/provide developers toolkits
- Enable PCIe Gen5 performance

- Available at Github
 - <u>https://github.com/poseidonos/poseidonos</u>

Thank You

Internals

- User I/O handling
- Provides NVMe-oF connectivity
- Logical Device mgmt Volume
- Performance Optimization
- User IO QoS
- Guarantee ACID of metadata
- Metadata I/O handling
- Journaling and Restore

- Provides Fault Tolerance Feature RAID / EC
- Partition mgmt System / User / Meta Area
- Physical device mgmt SSD Array, NVDIMM
- SSD device monitoring

SAMSUNG

Use cases

Single Array

Two Array (NUMA-aware)

- NUMA0: User IO, Network,
- NUMA1: Flush, RAID, GC,