
NVMe/TCP implementation
on F-stack

Shinik Park

ECE, Seoul National University

Network Becomes The Bottleneck of NVMeoF

NVMeoF (NVMe over Fabric) is becoming a trend which
enables end nodes to access remote NVMe storage pool.

Fortunately, DAS (Directed Attached Storage) could be
a feasible option at the datacenter.

However, DAS has a problem with low scalability.

NVMeoF: Techniques to access remote NVMe Storage

□ NVMeoF could be supported by multiple options.
▪ FC (Fibre Channel)

▪ Infiniband

▪ iWARP

▪ RoCE (RDMA over Converged Ethernet)

Pros: Low latency, high bandwidth

Cons: Custom host bus adapters and drivers are required,

difficult to deploy, maintain & cost inefficient

▪ TCP NVMe/TCP (NVMe over TCP) is compatible
with standard ethernet adapters.

→ Cost effective & Easy to deploy and maintain!

Possible Design Strategy for NVMe/TCP

□ Kernel level TCP implementation (NVMe/TCP)
▪ Directly modifying the raw kernel source code (i.e. kernel module

implementation)

→ Due to the hard deployment, it would not be handled.

□ User-level implementation (NVMe/TCP)
① DPDK (Data Plane Development Kit) based implementation

(i.e. mTCP , F-stack)

- Frameworks that implements TCP-stack into user-level.

② eBPF (extended Berkeley Packet Filter) based implementation

- Pushing packet processing code black into kernel hooking point.

User-level TCP is cost effective option to support
high performance NVMe/TCP.

User-level TCP Can Mitigate Kernel Overhead
□ mTCP [NSDI `14] conducts experiment to see Linux kernel overhead.

[CPU usage breakdown] [Relative scale of # transactions
processed per CPU cycle in the kernel]

▪ 8-core Intel Xeon CPU (2.9 GHz, E5-2690) / 32 GB memory
▪ 10 Gbps NIC (Intel 82599 chipsets)
▪ 𝐿𝑖𝑔ℎ𝑡𝑡𝑝𝑑 v1.4.32 web server
▪ Multiple clients repeatedly download a 64 KB file per connection.

Experiment setup

mTCP reduce CPU utilization of kernel from 80 % to 30 %.
→ mTCP can 4.3 times more effectively than linux.

80 – 83 %

30 %

User-level TCP Varients

□ mTCP [NSDI `14]: One of the famous user-level TCP implementation. mTCP is
basically framework for research so that has no compatibility to mature
application.

□ F-stack: Open source network framework developed by Tencent. F-stack include
an user space TCP/IP stack(port FreeBSD 11.0 stable). It support Nginx, Redis and
other mature applications.

[mTCP Structure Overview]
[F-Stack Structure Overview]

Testbed Setup: Kernel TCP Stack Performance in 100G Environment

□ Simple one-hop testbed is organized to test the performance of F-stack and legacy TCP.

□ First, we test default kernel TCP to check the effect of kernel overhead.
▪ Simple data transmission from server to client by 𝑖𝑝𝑒𝑟𝑓 tool

→ Records around 30-35 Gbps when NIC and Switch can support up to 100 Gbps.

[Snapshot of server-side log] [Snapshot of client-side log]

DPDK Speed Test with testpmd in 100G Environment

□ testpmd: TestPMD is the reference application distributed with the DPDK.
▪ Can measure performance by forwarding packets between Ethernet ports on a network interface.

□ Results
▪ ~98 Gbps is recorded → DPDK itself can fully support 100G hardware with appropriate parameters!

[Server-side testpmd setup and statistics] [Client-side testpmd setup and statistics]

Does F-stack can fully utilize the great performance of DPDK?

Performance Test Tool for F-stack

□ Performance comparison with kernel level TCP-stack
▪ SpeedTest source code should be implemented on F-stack.

▪ Since F-stack does not provide iperf-like application.

□ Implementation of SpeedTest application
▪ Done by using kqueue. (event driven I/O handling system call,

similar with epoll in Linux)

▪ Send Large file from F-stack server to F-stack Client to evaluate
maximum throughput under the given environment.

▪ Goal:

[Core code block of SpeedTest]

Max throughput comparison &
improving F-stack performance

Poor Performance of F-stack in 100G Environment

□ On the same one hop 100G testbed, default F-stack

▪ Records only ~1 Gbps… Poor performance compared to DPDK performance test.

→ This implies that performance bottleneck placed between DPDK and user-level TCP stack!

Where could be the bottleneck in F-stack...?

F-stack Break Down for Finding the Bottleneck

□ 3X Performance enhancement compared to the default F-stack.

① Main bottleneck is come from F-stack library to use DPDK functions.

② Development of congestion control algorithm for supporting NVMe/TCP

Speed Test
Application

F-stack
TCP

F-stack
Library

DPDK NIC

▶ Transmission volume ▶ TCP segment offload
▶ Send/recv buffer size
▶ Initial window size
▶ Congestion control

▶ TX queue size
▶ TX queue drain time
▶ Packet burst size
▶ Check function chain

Primary
Bottleneck

Currently In Progress

No Performance Enhancement

Performance Enhancement Observed

Secondary
Bottleneck

Congestion Control: Available Options in F-stack

□ F-stack supports multiple congestion control algorithms.
▪ I picked up some of algorithms that which could support NVMe/TCP.

• TCP CUBIC [SIGOPS `08]
- Loss-based algorithms used by default TCP of Linux(`06), MacOS(`14), Windows(`17).

• DCTCP [SIGCOMM `10]
- ECN (Explicit Congestion Notification)-based algorithms to support high bandwidth datacenter

networks.

• BBR [Queue `16]
- Model-based congestion control developed by Google.

▪ The performance of F-stack is highly dependent on the type of congestion control.
① Limitations of these methods to make hard to support NVMe/TCP with the best

performance.

② Finding a suitable congestion control candidates to support NVMe/TCP.

Congestion Control: Limitation of introduced CC
□ The problem of TCP CUBIC and DCTCP which is implemented in F-stack

▪ These algorithm can only check maximum available bandwidth by “Max probing”

→ Max probing implies that these algorithms MUST accompany queueing at the bottleneck link.

□ The problem of BBR
▪ Model-based congestion control algorithm has its limitation on slow adaptation.

→ Because it can respond to the network change after satisfying the state transition condition.

We decide to bridge the gap by using the
core idea from HPCC [SIGCOMM `19].

In actual performance evaluation, The
performance of these CCs are far from BDP.

HPCC: Direct Access to Queue Information via INT

Goal: To directly access the queue-related
information of the bottleneck switch at the end node.

Key ldea: Using In-Network Telemetry (INT), delivering
queue information to control cwnd and sending rate

INT (In-Network Telemetry) Overview

• B: The type of speed of the egress port
• TS: The timestamp when the packet is emitted

from its egress port
• txBytes: the accumulative total bytes sent from

the egress port
• qLen: the current queue length of the egress

port

1. Piggybacking
INT signal

2. Sends metadata
back to the send w/

ACK

Sender

Receiver

3. Control
sending
rate and
inflight
packets

1. Initialize sending window

T: RTT; BNIC: NIC Bandwidth

2. Pace packet sending rate based on window

T: RTT; W: sending window

3. Estimate inflight bytes and update window

(Prototype) NVMe CC: HPCC with less overhead INT

□ NVMe CC inherits the core idea of HPCC.
▪ By using INT at the programmable switch.

□ However, prototype of NVMe CC has
multiple advantages with HPCC.

① U calculation is done at the switch side.

② INT overhead becomes 7 or 8 bytes.
(HPCC: 2 + 8 × 𝑛 bytes, 𝑛: # of hops)

□ Prototype implementation is now in
progress.

F-stack
Server

F-stack
Client

NVMe CC Prototype Implementation on F-stack

TCP Header Option Implementation: addoptions

□ HPCC Option : Option length [server: 8 bytes, client: 7 bytes]

□ In freebsd/netinet/tcp_output.c, tcp_addoptions() modification.
▪ with variable definition at tcpopt structure in freebsd/netinet/tcp_var.h

[Server-side option field reservation] [Client-side U-echo relaying]

TCP Header Option Implementation: doptions

□ Packet Reception : Option length [server: 7 bytes, client: 8 bytes]
▪ Server receives 7 bytes option from ACK / Client receives 8 bytes option from the switch.

□ In freebsd/netinet/tcp_input.c, tcp_dooptions() modification.
▪ with variable definition at tcpopt structure in freebsd/netinet/tcp_var.h

▪ Server have to save U-echo from the ack and relay to the HPCC algorithm.

▪ Client have to save U value from the switch and feedback to the server through the ACK.

[Server-side option reception from ack] [Client-side option reception from the switch]

NVMe CC Core Algorithm Implementation

□ HPCC module implementation is finished (Verified by unittest)
▪ By relaying U-echo from ack, implements whole HPCC algorithm on the f-stack.

▪ 𝑐𝑐_𝑎𝑐𝑘_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑() roles the main control loop for the HPCC algorithm.

[Core code block of HPCC algorithm]

[HPCC algorithm from the paper]

Conclusion and Future Works

□ Conclusion

① NVMe/TCP is new trend to support fast access to the remote storage pool.
▪ With low cost & easy deployment

② User-level TCP is one of the best options for NVMe/TCP.

③ Performance bottleneck of user-level TCP is coming from F-stack library.

④ Congestion control algorithm is the key factor for the performance of NVMe/TCP.

□ Future works

① Main performance bottleneck is come from F-stack library.
▪ We have to focus on F-stack library optimization to dramatically increase F-stack performance.
▪ F-stack developers are also aware of this issue.

② Upgrade NVMe CC algorithm to utilize “the number of flows” which could be observed at the
programmable switch.
▪ By doing so, fairness performance is expected to be definitely improved.

