Open Infrastructure
FOUNDATION

I/_O Openinfra Community
‘w—’ Days Korea

NVMe/TCP implementation
on F-stack

Shinik Park
ECE, Seoul National University

Network Becomes The Bottleneck of NVMeoF

m [NE -2

16 LANES
SATA with AHCI PCle with NVMe

(Advanced Host Controller Interface) | (Non-Volatile Memory Express)

_ SATA | SATA I SATA il PCle3.0x4 (PCle4.0x4 |[PCle5.0x4

Max Bandwidth 1.5 Gbps 3 Gbps 6 Gbps 32 Gbps 64 Gbps 128 Gbps

Fortunately, DAS (Directed Attached Storage) could be
a feasible option at the datacenter.

with combination of 100G
NVMeoF (NVMe over Fabric) is becoming a trend which Ezgirggltec:r:x(ff)" Intel E810,
enables end nodes to access remote NVMe storage pool. | '

NVMeoF: Techniques to access remote NVMe Storage

NVMeoF could be supported by multiple options.
* FC (Fibre Channel)

" |nfiniband

= I\WARP

= RoCE (RDMA over Converged Ethernet)

Pros: Low latency, high bandwidth
Cons: Custom host bus adapters and drivers are required,
difficult to deploy, maintain & cost inefficient

= TCP NVMe/TCP (NVMe over TCP) is compatible

with standard ethernet adapters.
= Cost effective & Easy to deploy and maintain!

Possible Design Strategy for NVMe/TCP

0 Kernel level TCP implementation (NVMe/TCP)

= Directly modifying the raw kernel source code (i.e. kernel module
implementation)

— Due to the hard deployment, it would not be handled.

0 User-level implementation (NVMe/TCP)

(O DPDK (Data Plane Development Kit) based implementation
(i.e. mTCP, F-stack)

- Frameworks that implements TCP-stack into user-level.
2 eBPF (extended Berkeley Packet Filter) based implementation
- Pushing packet processing code black into kernel hooking point.

User-level TCP is cost effective option to support

high performance NVMe/TCP.

User-level TCP Can Mitigate Kernel Overhead

0 mTCP [NSDI "14] conducts experiment to see Linux kernel overhead.

100%
80%
60%

40%

CPU Utilization

20%
0%

Experiment setup

= 8-core Intel Xeon CPU (2.9 GHz, E5-2690) / 32 GB memory

= 10 Gbps NIC (Intel 82599 chipsets)

= Lighttpd v1.4.32 web server

= Multiple clients repeatedly download a 64 KB file per connection.

—
30-94

| [

1 1
OKernel OPacket /O @TCP/IP mApplication

Linux-2.6 Linux-3.10 MegaPipe mTCP
[CPU usage breakdown]

5

Relative Scale
o W
|

[a—

o

C—Relative Scale

—e—Transaction Rate /

/ 437

0——/

1.7

1.00 0.96

Linux-2.6 Linux-3.10 MegaPipe mTCP

[Relative scale of # transactions
processed per CPU cycle in the kernel]

MTCP reduce CPU utilization of kernel from 80 % to 30 %.

- mTCP can 4.3 times more effectively than linux.

Transactions/sec (x 10%)

User-level TCP Varients

0 mTCP [NSDI "14]: One of the famous user-level TCP implementation. mTCP is
basically framework for research so that has no compatibility to mature
application.

0 F-stack: Open source network framework developed by Tencent. F-stack include
an user space TCP/IP stack(port FreeBSD 11.0 stable). It support Nginx, Redis and
other mature applications.

Core O Corel / \
1 Application Application
Thread 0 Thread 1 2
3
mTCP socket mTCP epoll
mTCP thread 0 mTCP thread 1
User-level packet I/0O library (PSIO) User-level
NIC dev|ce driver Kernel-level m

[mTCP Structure Overview] \ [F-Stack Structure Overview] /

Testbed Setup: Kernel TCP Stack Performance in 100G Environment

0 Simple one-hop testbed is organized to test the performance of F-stack and legacy TCP.
Testbed Topology
100G 100G

)

Toflno Switch

F-stack (100 Gbps] F-stack
Server Client
\ In-lab Testbed/

O First, we test default kernel TCP to check the effect of kernel overhead.
= Simple data transmission from server to client by iperf tool
—> Records around 30-35 Gbps when NIC and Switch can support up to 100 Gbps.

[Snapshot of server-side log] [Snapshot of client-side log]

DPDK Speed Test with testomd in 100G Environment

O testomd: TestPMD is the reference application distributed with the DPDK.

= Can measure performance by forwarding packets between Ethernet ports on a network interface.

0 Results
= ~98 Gbps is recorded > DPDK itself can fully support 100G hardware with appropriate parameters!

Rx-bps:
Tx-bps: 98434

i1y TrITTYITIIOTY

[Server-side testpmd setup and statistics] [Client-side testpmd setup and statistics]

Does F-stack can fully utilize the great performance of DPDK?

Performance Test Tool for F-stack

0 Performance comparison with kernel level TCP-stack
= SpeedTest source code should be implemented on F-stack.
= Since F-stack does not provide iperf-like application.

[Core code block of SpeedTest]

0 Implementation of SpeedTest application

= Done by using kqueue. (event driven 1/0 handling system call,
similar with epoll in Linux)

= Send Large file from F-stack server to F-stack Client to evaluate
maximum throughput under the given environment.

= Goal:

Max throughput comparison &

improving F-stack performance

Poor Performance of F-stack in 100G Environment

Testbed Topology
100G 100G

0 On the same one hop 100G testbed, default F-stack ;qﬁ NIC Nuc1§

Tofino Switch

F-stack [100 Gbps] F-stack
Server Client

\ In-lab Testbed)

= Records only ~1 Gbps... Poor performance compared to DPDK performance test.

- This implies that performance bottleneck placed between DPDK and user-level TCP stack!

Where could be the bottleneck in F-stack...?

F-stack Break Down for Finding the Bottleneck

Speed Test F-stack F-stack
Application TCP Library

P Transmission volume » TCP segment offload P TX queue size

» Send/recv buffer size P TX queue drain time

P Initial window size » Packet burst size

» Congestion control » Check function chain Bl Performance Enhancement Observed

. B No Performance Enhancement
Secondary Primary B Currently In P
urrently In Progress

Bottleneck Bottleneck Y s

0 3X Performance enhancement compared to the default F-stack.

@ Main bottleneck is come from F-stack library to use DPDK functions.
@ Development of congestion control algorithm for supporting NVMe/TCP

Congestion Control: Available Options in F-stack

0 F-stack supports multiple congestion control algorithms.

= | picked up some of algorithms that which could support NVMe/TCP.
e TCP CUBIC [SIGOPS "08]
- Loss-based algorithms used by default TCP of Linux('06), MacOS('14), Windows("17).
 DCTCP [SIGCOMM '10]

- ECN (Explicit Congestion Notification)-based algorithms to support high bandwidth datacenter
networks.

 BBR [Queue 16]
- Model-based congestion control developed by Google.

* The performance of F-stack is highly dependent on the type of congestion control.

@ Limitations of these methods to make hard to support NVMe/TCP with the best
performance.

@ Finding a suitable congestion control candidates to support NVMe/TCP.

Congestion Control: Limitation of introduced CC
0 The problem of TCP CUBIC and DCTCP which is implemented in F-stack

= These algorithm can only check maximum available bandwidth by “Max probing”
- Max probing implies that these algorithms MUST accompany queueing at the bottleneck link.

0 The problem of BBR

= Model-based congestion control algorithm has its limitation on slow adaptation.
—> Because it can respond to the network change after satisfying the state transition condition.

100 .
S »0.9xBDP -
“ YOSXBDP | In actual performance evaluation, The
£ o | [ableop performance of these
E- 40r :I]?E);{Rate
a <% |4 *Verus
20 4((",. v Sprout H
¥wx ¢ Vegas . . .
oL | ||| <95t percentie We decide to bridge the gap by using the
40 60 80 100 200 300 400 500

core idea from HPCC [SIGCOMM "19].

Latency (ms)

Mean and 95-th percentile RTT against the avg. throughput
over a real network.

HPCC: Direct Access to Queue Information via INT

Goal: To directly access the queue-related

information of the bottleneck switch at the end node.

Key lIdea: Using In-Network Telemetry (INT), delivering
gueue information to control cwnd and sending rate

INT (In-Network Telemetry) Overview

adjusting flow
rates per ACK -
Sender
INT Overhead (JIZ bytes for 5 hops)
[\
nHop pathiD 15t Hop(64 bits 27 Hop

(4bits) | (12bits) | B| TS | txBytes | glen | (64 bits)

* B: The type of speed of the egress port

* TS: The timestamp when the packet is emitted
from its egress port

* txBytes: the accumulative total bytes sent from
the egress port

* glen: the current queue length of the egress
port

Sender

i Receiver
1. Initialize sending window

Winit = BNy X T T:RTT; Buic: NIC Bandwidth

2. Pace packet sending rate based on window
R = % T: RTT; W: sending window
3. Estimate inflight bytes and update window

)) W;
qlenj+ txRatej x T 2) Wi = Vi

——— + Wy
BjxT max;(Uj)/n

(1) U; =

(Prototype) NVMe CC: HPCC with less overhead INT

0 NVMe CC inherits the core idea of HPCC.
= By using INT at the programmable switch.

0 However, prototype of NVMe CC has

multiple advantages with HPCC.

(@) U calculation is done at the switch side.

@

INT overhead becomes 7 or 8 bytes.
(HPCC: 2 + 8 X n bytes, n: # of hops)

O Prototype implementation is now in
progress.

< INT Format Example >

INT Overhead (8 bytes)
I 1

1Byte |1Byte |2 Bytes |2 Bytes|2 Bytes

Opt- Opt- Opt- Opt- Opt-data
kind length | ExID Magic# | (U and U-echo)

L=

F-stack
Server

g !E —

Ethernet Adapter Ethernet Adapter 1
S %
L

U updates t—
F-stack

pkt
Client

Uinitializes

el
&To &Z3"

ACK with U-echo option

NVMe CC Prototype Implementation on F-stack

Notations [] General F-stack func

=» Payload Flow [__] Modified F-stack func

Sender application o» Link Info Flow [I] New F-stack func Receiver application
FreeBSD write() Function FreeBSD read() Function
write() < INT Format Example > read ()
INT Overhead (8 bytes)
I 1 f
¥ 3
Socket buffer binding S ||B by [kl 2 Socket buffer binding <
shappendstream_locked () Opt- | Opt-= Opt-) Opt- | Opt-data shappendstream_locked ()
- kind length | ExID Magic# | (U and U-echo) -
freebsd/kern/uipc_sockbuf.c freebsd/kern/uipc_sockbuf.c
—
_ Packet Generation : (. e _ Packet Reception > Payload Process
| - tep_output() !E ! -> tep_input() tep_do_segment()
1 : | , .
———— freebsd/netinet/tcp_output.c |t ornet Adapter Ethernet Adapter I freebsd/netinet/tcp_input.c
v
HPCC function if U=nthen Uinitializes U updates '— Ack Packet Classification
ComputeWIND(U, updatelW,) we tep_do_segment() = =1
W=—+Wy; pkt pkt pkt P70 Segmen [
t 4 INT 7 T v
CC Module else '{::'g b ;::‘ - ;::c i::ﬂ . ;::_‘:m TCP option with U-echo
cc_ack_received() W=WE°+ Wy — — o kind |length |ExiD | Magica | (U-echo] tep_addoptions()
L]
o ; - i
T v:inflight bytes freebsd/netinet/cc/cc_hpcce.c Tofino Switch Tofino Switch TCP Option Overhead (7 bytes) "
Ack Processing _| Packet Reception - = = = e e e e e « | Ack PacketGeneration | L
tcp_do_segment() |4 tep_input () ACK tep_output()
tep_do options) |freebsd/netinet/tcp_input.c freebsd/netinet/tcp_output.c
. ACK with U-echo option . .
Sender-side F-Stack Receiver-side F-Stack

TCP Header Option Implementation: addoptions

0 HPCC Option : Option length [server: 8 bytes, client: 7 bytes]

1 Byte |1Byte |2 Bytes|2 Bytes| 2 Bytes 1 Byte |1Byte |2 Bytes|2 Bytes |1 Byte
Opt- Opt- Opt- Opt- Opt-data Opt- Opt- Opt- Opt- Opt-data
kind length | ExID Magic# | (U and U-echo) kind length | ExID Magic# | (U-echo)
[Server-side option field reservation] [Client-side U-echo relaying]

O In freebsd/netinet/tcp _output.c, tcp_addoptions() modification.

= with variable definition at tcpopt structure in freebsd/netinet/tcp_var.h

case TOF_INT: Option field reservation in data packet at the sender.
Receiver-side U-echo */ Sender returns received U as the U-echo to the switch */
U-echo option generation (7 bytes) in ACK packet at the receiver */ else {
To do: Have to relay the data from the data packet to the U-echo field! */ while (optlen % 4) {
if(to->uflags !=0) { optlen += TCPOLEN_NOP;
while (optlen % 4) { “optp++ = TCPOPT_NOP;
optlen += TCPOLEN_NOP; }
“optp++ = TCPOPT_NOP;
} optlen += TCPOLEN_SINT;
*optp++ = TCPOPT_SINT;

optlen += TCPOLEN_RINT;

*optp++ = TCPOPT_RINT; Field Reservation */
ptp++ = TCPOLEN_SINT;

*optp++ = TCPOLEN_RINT;
to->to_EXID = 2;
to->to_EXID = htons(to->to_EXID); to->to_ExID = htons(to->to_EXID);
bcopy((u_char *)&to->to_EXID, optp, sizeof(to->to_EXID)); bcopy((u_char *)&to->to_EXID, optp, sizeof(to->to_EXID));
optp += sizeof(to->to_EXID); optp += sizeof(to->to_EXID);

to->to_magicnum = htons(to->to_magicnum); to->to_magicnum = 1;
bcopy((u_char *)&to->to_magicnum, optp, sizeof(to->to_magicnum)); to->to_magicnum = htons(to->to_magicnum);
optp += sizeof(to->to_magicnum); bcopy((u_char *)&to->to_magicnum, optp, sizeof(to->to_magicnum));
optp += sizeof(to->to_magicnum);
/* U-echo with received U value */
optp++ = to->to_U; / U value reservation with 0 value */
ptp++ = 0;

/* Actual Uecho value return to the switch */
to->to_Uecho = to->to_U;
*optp++ = to->to_Uecho;

TCP Header Option Implementation: doptions

0 Packet Reception : Option length [server: 7 bytes, client: 8 bytes]

= Server receives 7 bytes option from ACK / Client receives 8 bytes option from the switch.

1 Byte |1Byte |2 Bytes|2 Bytes |1 Byte 1Byte |1Byte |2 Bytes|2 Bytes|2 Bytes

Opt- Opt- Opt- Opt- Opt-data Opt- Opt- Opt- Opt- Opt-data

kind length | ExID Magic# | (U-echo) kind length | ExID Magic# | (U and U-echo)
[Server-side option reception from ack] [Client-side option reception from the switch]

0 In freebsd/netinet/tcp _input.c, tcp_dooptions() modification.
= with variable definition at tcpopt structure in freebsd/netinet/tcp var.h

/* sender interpret option header field (7 bytes) with this case */ /* Receiver interpret option header field (8 bytes) with this case */
case TCPQPT_RINT: case TCPOPT_SINT:

if (optlen !=_ TCPOLEN_RINT) if (optlen != TCPOLEN_SINT)

continue; continue;

to->to_flags |= TOF_INT;

bcopy((char *)cp + 2, (char *)&to->to_ExID, sizeof(to->to_ExID)); to->to_flags |= TOF_INT;

to->to_EXID = ntohs(to->to_EXID); bcopy((char *)cp + 2, (char *)&to->to_ExID, sizeof(to->to_EXID));

to->to_EXID = ntohs(to->to_EXID);

bcopy((char *Jcp + 4, (char *)&to—;to_magicnum, sizeof(to->to_magichum));
to->to_magicnum = ntohs(to->to_magicnum); bcopy((char *)cp + 4, (char *)&to->to_magicnum, sizeof(to->to_magicnum));
to->to_magichum = ntohs(to->to_magicnum);

bcopy((char *)cp + 5, (char *)&to->to_U, sizeof(to->to_U));

break; bcopy((char *)cp + 5, (char *)&to->to_U, sizeof(to->to_U));
bcopy((char *)cp + 6, (char *)&to->to_Uecho, sizeof(to->to_Uecho));
break;

= Server have to save U-echo from the ack and relay to the HPCC algorithm.
= (Client have to save U value from the switch and feedback to the server through the ACK.

0 HPCC module implementation is finished (Verified by unittest)

= By relaying U-echo from ack, implements whole HPCC algorithm on the f-stack.

NVMe CC Core Algorithm Implementation

" cc_ack _received() roles the main control loop for the HPCC algorithm.

[HPCC algorithm from the paper]

procedure NEwAck(ack)
if ack.seq>lastUpdateSeq then
W = CoMPUTEWIND(MEASUREINFLIGHT(ack), True);
lastUpdateSeq = snd_nxt;
else

W = CompUTEWIND(MEASUREINFLIGHT(ack), False);

R=Y.[L=ack.L;

function CompuTEWIND(U, updateWec)
if U >= ngorincStage >= maxStage then
r — W€ ¥ oy
W= Ul + War;
if updateWc then
incStage = 0; W€ = W,

else
W= WE + War;
if updateWc then
incStage + +; W€

W;

return W;

[Core code block of HPCC algorithm]

static void
hpcc_ack_received(struct cc_var *cecv, uintl6_t type)

)

struct hpcc *hpcc_data;
hpcc_data = ccv->cc_data;

if(type == CC_ACK) {
if(cecv->curack > hpcc_data->lastUpdate_seq) {
hpcc_compute_wind(ccv(ccv, downlink_U), true);
hpcc_data->lastUpdate_seq = CCV(ccv, snd_nxt);
}
else {
hpcc_compute_wind(CCV(ccv, downlink_U, false);

1

ccv(cev, snd_cwnd) = hpcc_data->wnd;

static void
hpcc_compute_wind(struct cc_var *ccv, uint8_t U, bool updateWc)

struct hpcc *hpcc_data;

Jeta || hpcc_data-
hpecc_data->wnd = hpcc_data->wnd_c *
if(updataWc) {
hpcc_data->incStage = 0;
hpcc_data->wnd_c = hpcc_data->wnd;

}

hpcc_data->wnd = hpcc_data->wnd_c + hpcc_data->wnd_ai;
if(updataWc) {

hpcc_data->incStage++;

hpcc_data->wnd_c = hpcc_data->wnd;

Conclusion and Future Works

Conclusion

NVMe/TCP is new trend to support fast access to the remote storage pool.
= With low cost & easy deployment

[]

@

(@ User-level TCP is one of the best options for NVMe/TCP.

(3 Performance bottleneck of user-level TCP is coming from F-stack library.

4 Congestion control algorithm is the key factor for the performance of NVMe/TCP.

0 Future works

@ Main performance bottleneck is come from F-stack library.
= We have to focus on F-stack library optimization to dramatically increase F-stack performance.
= F-stack developers are also aware of this issue.

2 Upgrade NVMe CC algorithm to utilize “the number of flows” which could be observed at the
programmable switch.

= By doing so, fairness performance is expected to be definitely improved.

