
Persistent Buffer Cache for High-performance Storage Systems

OpenInfra Community Days Korea 2021

UNIST (NECSST lab.)
Hyunsub Song

TABLE OF
CONTENTS

01 – INTRODUCTION

02 – FIRST RESPONDER

03 – FIRST RESPONDER ON CEPH

04 – SUMMARY

2 / 47

TABLE OF
CONTENTS

01 – INTRODUCTION

02 – FIRST RESPONDER

03 – FIRST RESPONDER ON CEPH

04 – SUMMARY

3 / 47

Persistent Memory (PM)

MemoryStorage

§ a
• Non-volatility
• Byte-level random access
• Fast access time (nanoseconds)

Persistent Memory Features

Persistent memory is evolving

4 / 47

Evolution of critical path

5 / 47

Evolution of critical path

PM (20~100ns)

6 / 47

Evolution of critical path

PM (20~100ns)

Since the medium is very fast,
the overhead of the critical path should be drastically reduced.

1. Multi-versioning mechanism
2. Long I/O stack
3. Management overhead

We need to rethink the critical path components that cause performance degradation.

7 / 47

Studies that consider PM as storage

▪ PM-dedicated file system and tiered PM file system

8 / 47

PM Targeted File Systems

§ Designed to reap PM performance

SOSP 2009 “BPFS (Better I/O Through Byte-Addressable, Persistent Memory)”
SC 2011 “SCMFS (SCMFS: A File System for Storage Class Memory)”
EuroSys 2014 “PMFS (System Software for Persistent Memory)”
EuroSys 2014 “Aerie (Aerie: Flexible File-System Interfaces to Storage-Class Memory)”
EuroSys 2016 “HiNFS (A High Performance File System for Non-Volatile Main Memory)”
SOSP 2017 “NOVA (NOVA-Fortis: A Fault-Tolerant Non-Volatile Main Memory File System)”
SOSP 2017 “Strata (Strata: A Cross Media File System)”
HotStorage 2019 “EvFS (EvFS: User-level, Event-driven File System for Non- volatile Memory)”
FAST 2019 “Orion (Orion: A Distributed File System for Non-Volatile Main Memory and RDMA-Capable Networks)”
FAST 2019 “Ziggurat (Ziggurat: A Tiered File System for Non- Volatile Main Memories and Disks)”
SOSP 2019 “ZoFS (Performance and Protection in the ZoFS User-space NVM File System)”
SOSP 2019 “SplitFS (SplitFS: Reducing Software Overhead in File Systems for Persistent Memory)”
FAST 2021 “KucoFS (Scalable Persistent Memory File System with Kernel-Userspace Collaboration)”
--
Linux kernel “DAX (Ext4-DAX, XFS-DAX)”

9 / 47

But…

§ PM only
• PM as end destination media
• Replace traditional storage?

− Exception: Strata and Ziggurat

§ Lengthy process to maturity
• E.g., Ext4…still in progress
• Wisdom with age

10 / 47

TABLE OF
CONTENTS

01 – INTRODUCTION

02 – FIRST RESPONDER

03 – FIRST RESPONDER ON CEPH

04 – SUMMARY

11 / 47

- FR not only acts as a cache, but also as a storage using its persistent properties

First Responder (FR)

▪ PM-based cache-like layer

Storage

HDD (~10ms)

SAS SSD (~150us)

NVMe SSD (<100us)

Other
I/O Stacks

FR

Application

Intel OPTANE DC

File System

NOVA
Ext4-DAXStrata

Virtual
File System

Intel OPTANE DC

12 / 47

Goals

§ Keep legacy file system and storage media "as-is”

Storage

HDD (~10ms)

SAS SSD (~150us)

NVMe SSD (<100us)

Other
I/O Stacks

FR

Application

Intel OPTANE DC

File System

NOVA
Ext4-DAXStrata

Virtual
File System

Intel OPTANE DC

- FR is implemented in VFS layer
- Modified/added LoC

- ~2900 LoC for FR module
- ~70 LoC in VFS layer

- Any file system can be used
- Minor modifications to file system required

- ~30 LoC modified/added in Ext4 and Btrfs

- Any storage can be used

13 / 47

Goals

§ PM performance
• Lightweight static management

§ Ensure durability/consistency
• Static protocol naturally fulfills this

* Average latency for managing cache for various indexing and management policies

vs.Our static indexing 67ns

Hashing indexing 75ns

* Insert includes mechanism to find empty blocks

14 / 47

Design

§ Internal components of FR

• Chunk: Actual data is stored
• Tag: Some file’s information and the status of chunk are stored

− Key used for indexing: key mod Floor(N/2)
− Bits in Status flag: V (Valid), N (New)

f1 f0 fi fi+1 Underlying
storage device

fi fi fifi fi+1 fi+1

f0 f1f0 f1 f1 fi fi…

fi Stride

f0 Stride
Key0 Keyi

Keyi+1

Key1
Key (7) Time stamp (8)

Status flag (1) (bytes)
File size (8) Inode no. (8)

Chunk

Tag

Chunk

Tag

fi+1 Stride

f1

…
Slot

Sequencing is divided
in 2-way manner

15 / 47

Design

§ Layout of FR

• Static placement/replacement scheme in FR
− Every files have destined location within FR with no PM allocator
à Can result in higher miss rate and collision

f1 f0 fi fi+1 Underlying
storage device

fi fi fifi fi+1 fi+1

f0 f1f0 f1 f1 fi fi…

fi Stride

f0 Stride
Key0 Keyi

Keyi+1

Key1
Key (7) Time stamp (8)

Status flag (1) (bytes)
File size (8) Inode no. (8)

Chunk

Tag

Chunk

Tag

fi+1 Stride

f1

…
Slot

16 / 47

Design

§ Remedies

• Sufficient large FR (>> working set)
• Stride: To eliminate invasion in chunk as much as possible

− Files are positioned apart from each other by stride
• Periodic Flush: To reduce penalty (for clean chunk, there is no penalty for collision)

− Data is written to chunk, is flushed in the background

f1 f0 fi fi+1 Underlying
storage device

fi fi fifi fi+1 fi+1 fi+2 fi+2 fi+2

f0 f1f0 f1 f1 fi fi…

fi Stride

f0 Stride
Key0 Keyi

Keyi+1

Key1

…

Key (7) Time stamp (8)

Status flag (1) (bytes)
File size (8) Inode no. (8)

Chunk

Tag

Chunk

Tag

fi+1 Stride

f1

…
Slot

Keyi+2

fi+2 Stride
fi+1

*Collision occurs when data from files invades
each other’s chunk beyond the stride value

17 / 47

Data consistency protocol

§ Indexing
• Key mod N à key mod Floor(N/2)

§ Cases
• S[C(0, 0), C(0, 0)]: the slot is empty
• S[C(1, 1), C(0, 0)]: only one chunk has valid data
• S[C(1, 1), C(1, 0)]: both chunks have valid data

18 / 47

Data consistency protocol

§ Case 1

19 / 47

Data consistency protocol

§ Case 2

(1)

(2)

20 / 47

Data consistency protocol

§ Case 3

(1) (2)

(3)

21 / 47

Failure recovery in FR

§ Key point
• If a fault occurs at any step, the recovered state will either be one of the

initial states of the figures or have already completed the intended write

22 / 47

Failure recovery in FR

§ Example 1 Initial state of Case 3-2

23 / 47

Failure recovery in FR

§ Example 2 Initial state of Case 2

24 / 47

Performance evaluation

§ System configuration

§ Description of experimental comparison

Notation Description Configuration

PM DRAM Backing storage

FR-X FR applied to Ext4 (X is period value, e.g., 10ms) 128GB 1TB (SSD)

Ext4 Traditional block-based file system 128GB 1TB (SSD)

DM-WC DM-Writecache applied to Ext4 128GB 128GB 1TB (SSD)

DAX PM-aware file system developed based on Ext4 128GB (PM)

NOVA PM-aware file system 128GB (PM)

(128GB)

25 / 47

Standard workloads

§ Benchmarks

• Filebench
− Fileserver: write-intensive workload without fsync() calls
− Varmail and OLTP: have considerable number of fsync() calls

• YCSB (record selection for -D is Latest, while all others are Zipfian)
− Application: RocksDB
− -A, -F: write-intensive workloads
− -C: read-only workload
− -B, -D, -E: read-intensive workloads

26 / 47

Standard workloads

§ Overall performance

Absolute
performance
number

Observations
- [Filebench] For Varmail and OLTP, FR is roughly 94x and 8x better than Ext4 and roughly 4.5x and 1.5x better than DM-WC

FR performance is slightly lower than NOVA, while DAX suffers for Varmail
- [YCSB] FR, NOVA, and DAX show similar performance

Ext4 and DM-WC perform worst for YCSB-A, -B, and -C

27 / 47

Standard workloads

§ Overall performance

Absolute
performance
number

Observations
- [Filebench] For Varmail and OLTP, FR is roughly 94x and 8x better than Ext4 and roughly 4.5x and 1.5x better than DM-WC

FR performance is slightly lower than NOVA, while DAX suffers for Varmail
- [YCSB] FR, NOVA, and DAX show similar performance

Ext4 and DM-WC perform worst for YCSB-A, -B, and -C

28 / 47

Standard workloads

§ Overall performance

Absolute
performance
number

Observations
- [Filebench] For Varmail and OLTP, FR is roughly 94x and 8x better than Ext4 and roughly 4.5x and 1.5x better than DM-WC

FR performance is slightly lower than NOVA, while DAX suffers for Varmail
- [YCSB] FR, NOVA, and DAX show similar performance

Ext4 and DM-WC perform worst for YCSB-A, -B, and -C

29 / 47

Effect of PM size

§ Performance results for PM size of 2xGB, where x is value of points in x-axis
• Normalized to the performance of FR when x = 7 (128GB)

30 / 47

Dynamic workload

§ Limitations of standard workloads
• Standard workloads do not capture

the dynamics of real-world workloads
− In terms of pattern

− Standard workloads: Working set does not change with time
− Real-world workloads: Working set grows and shrinks as time evolves

− In terms of operation generation
− Standard workloads: No change in the access intensities of working set over time
− Real-world workloads: Access intensities are also vary with time

à Need for dynamic workload that is more representative of real-world workloads

Working set of standard workload (Fileserver)

Read Write

Fi
le

 ID
 a

nd
 O

ffs
et

Times (sec)

31 / 47

Dynamic workload

§ We devise synthetic workloads using I/O testing tool FIO

Configuration: Total IO size is 575GB
- FIO-6: 6 files, 50GB working set
- FIO-12: 12 files, 100GB working set

(b) Working set (FIO-12)
(a) Characteristics of 21 files used to
generate synthetic workload (FIO)

32 / 47

Dynamic workload

§ Performance results

Observations
- FR provides more than 9x higher aggregate throughput and ended over 3x faster than Ext4
- FR is providing immediately durable in-order semantics
- For NOVA and DAX, cannot run as dataset is larger than PM size

33 / 47

TABLE OF
CONTENTS

01 – INTRODUCTION

02 – FIRST RESPONDER

03 – FIRST RESPONDER ON CEPH

04 – SUMMARY

34 / 47

FR on other storage platforms

35 / 47

Step 1: FR on Ceph client

§ FR is applied to the client server running 3 OSDs as block device

Observations
- Media performance: NVMe SSD > SATA SSD > network-connected OSDs > HDD
- FR and Ext4 have performance changes depending on the media performance
- DM-WC still shows similar performance

36 / 47

§ FR module can be applied everywhere!!!

Step 2: FR on Ceph OSD

FR Module

Storage

HDD (~10ms)

SAS SSD (~150us)

NVMe SSD (<100us)

Other

I/O Stacks

FR

Application

Intel OPTANE DC

File System

NOVA
Ext4-DAXStrata

Virtual

File System

Intel OPTANE DC

Modularization

37 / 47

Step 2: FR on Ceph OSD

§ What if you apply FR to Ceph?
• High performance
• High reliability

38 / 47

Step 2: FR on Ceph OSD

§ Application point
• Object Storage Daemon

(OSD)

39 / 47

§ Architecture of Ceph RADOS Block Device (RBD)

Step 2: FR on Ceph OSD

… …

* “File Systems Unfit as Distributed Storage Backends: Lessons
from 10 Years of Ceph Evolution,” In Proc. SOSP’19

40 / 47

Step 2: FR on Ceph OSD

§ Application point: “BlueStore”
• OSD -> Storage backend (BlueStore)

41 / 47

Step 2: FR on Ceph OSD

BufferCache OnodeCache

§ Cache in BlueStore
• BlueStore’s own write-through cache in user space
• Uses the 2Q and LRU algorithm

42 / 47

Step 2: FR on Ceph OSD

§ FR in BlueStore
• Critical path can be performed with PM performance

BufferCache OnodeCache

FR Module

43 / 47

Step 2: In progress

§ FR on Ceph
• Analysis of target

− BlueStore, OnodeCache code
• Implementation of FR

− Modularizing of FR in user-level (C à C++)
− Allocation user-level PM pool
− Applying FR to BlueStore

• Debugging
• Validation of FR effect
• Devising ways to overcome shortcoming

44 / 47

TABLE OF
CONTENTS

01 – INTRODUCTION

02 – FIRST RESPONDER (FR)

03 – FIRST RESPONDER ON CEPH

04 – SUMMARY

45 / 47

§ First Responder (FR)
• PM-based cache-like layer
• Keep legacy storage system and storage media "as-is”
• PM performance

− Respond quickly with in-order semantics
− Hide traditional I/O stack overhead

• Ensure durability/consistency
− Protocol implemented with static management

Summary

46 / 47

Thank you!!!

47 / 47

